

Arnauld E. Nicogossian

Associate Administrator

NASA Office of Life & Microgravity Sciences & Applications

NASA Vision

NASA is an investment in America's future.

As explorers, pioneers, and innovators, we boldly expand frontiers in air and space to inspire and serve America and to benefit the quality of life on Earth.

Strategic Framework

...advance...knowledge

NASA's MISSION ...explore...space

...transfer...technology

NASA Science

FROM Space

ABOUT Space

IN Space

Attributes of Space

In microgravity, there is no.....

Convection

A candle burns on Earth (top) & in microgravity (bottom).

Buoyancy

Fluid flows through a pipe in Earth's gravity (top) and in microgravity (bottom).

Sedimentation

On Earth, particulates settle out of a liquid (top), but in space, particulates are suspended evenly (bottom).

OLMSA's Role

Use the space environment for research

Understanding

the role of

Gravity

dose

response

Enable safe human exploration

Facilitate the commercial use of space

Interdisciplinary Approach

...Processes...

How we do Research

Human Space Mission Architecture

System Environment

Designers must facilitate Human performance...

...by creating a System that responds effectively...

...to the challenges of the space flight Environment.

External Environment

System Environment

- Microgravity
- Radiation
 - ✓ Cosmic (steady)
 - ✓ Solar (variable flux)
- Temperature extremes
- Intolerable pressures
 - ✓ Vacuum
 - ✓ High pressures one day?
- Biological threat?
- Time/distance

Internal Environment

System Environment

Habitat configuration

- Atmospheric composition/ pressure
- Toxicology
- Ergonomics
- Recreation facilities
- Protection

System configuration is intimately tied to internal environmental conditions.

Internal Psychosocial Elements

System Environment

- Isolation
- Confinement
- Multicultural factors
- Societal issues

System

Function -

System
Environment
Performance

Microgravity Sciences and Exploration System Design

- Spacecraft protection
 - ✓ Materials science (shielding)
 - ✓ Biotechnology (organic materials)
- Life support systems
 - ✓ Fluid physics (air and water flow)
 - ✓ Combustion science (fire suppression)
 - ✓ Fundamental biology (nutrient production)
 - ✓ Biotechnology (biosensors)
- In situ resource utilization
 - ✓ Granular materials (soil behavior)
 - ✓ Combustion science (energy production)
 - ✓ Fundamental physics (energy control)

...and more..

Crew Selection

Human System Environment

Crew selection takes into consideration

Medical standards

Skills composition

Psychological suitability

Crew compatibility

Crew Training

Human System Environment

- Survival
- Mission-specific
- Experiments
- Medical skills

Countermeasures

Mechanism

Plasticity

Receptor adjustment

Long chain myosin

Bone formation

Ataxia Fluid loss (2 L), Muscle fiber Reduction BP control shift & strength 1%/ month decrease

Traditional

- ✓ Exercise
- ✓ Nutrition
- ✓ Fluids
- ✓ Pharmacological supplements

Non-traditional

- ✓ Artificial gravity
- ✓ Intervention at genetic/molecular level

Manifestation

Human Adaptation to Space Flight

Pathological

Neurosensory & Neuromotor

Cardiovascular/ Pulmonary

Endocrine

Musculoskeletal

parallels with aging...

Plasticity

Rapid changes in function and structure to high or low acceleration forces

Type of Response

Ataxia SMS Occular

Purkinje cell

morphology

Bone Response

Earth

PTH & IGF-I

 $\uparrow =$

Osteoprogenitor
Number &
Bone
Mineralization

Bone Formation & Density

Space

PTH & IGF-I

Osteoprogenitor
Number &
Bone
Mineralization

Muscle Fiber Response

Red Blood Cell Response

Communications Challenge: Time and Space

4

Real-time communications

Store-and-forward Autonomy

+ Air/ground & EVA/IVA

Hierarchy of Medical Technologies

Selfreplicating, f-repairing, -andredinglere complex Interconnected & autonomous **Smart &** communicative **Human-centered** Human-assisted

Human ependent

Information

Bioastronautics

- Habitation/ Environmental Health
- Human Adaptation/
 Countermeasures
- Health Care Systems

People living and working in space

Station as a Testbed

Station is an integrated test platform for exploration science, technologies, and operations.

System Function

System Environment

Mission objectives
define system function:
transport, protect, and
provide for the crew.

- Life support
- Fire prevention & suppression
- Environmental control systems
- Shielding materials
- Support systems

Underlying research

Fluid physics
Materials science
Combustion science
Fundamental biology
Fundamental physics

System Design

System Environment

System design accommodates constraints on available power; mass; and crew size, expertise, and availability.
Technological and economic trade-offs determine ultimate design.

Human factors

- Accessibility
- Ease-of-use

Biologicallyinspired technologies

- Miniaturization
- Autonomy
- Redundancy

System Performance

System Environment

Performance parameters are chosen to accommodate crew needs and available technology.

- Standard operating procedures
 - ✓ Vehicle/habitat operations
 - ✓ Maintenance procedures
 - ✓ Medical care standards
 - ✓ Work/rest cycles

- System performance parameters/limits
- Emergency procedures

Crew Training

Human System Environment

- Mission-specific
 - ✓ Operations
 - ✓ Research procedures
- Medical care
 - ✓ Routine assessments
 - ✓ Emergency interventions

Pre-mission training will focus on general skills development, while real-time training throughout the mission will instruct the crew on specific tasks.

Crew Protection

Human System Environment

Crew well-being is protected through a series of physical and psychological countermeasures.

Countermeasures

- ✓ Traditional
 - exercise
 - nutrition
 - fluids
 - pharmacological supplements
- ✓ Non-traditional
 - artificial gravity
 - intervention at genetic/molecular level
- Psychological support

Health Care Needs Beyond LEO

The remoteness of exploration-class missions generates a unique set of requirement for health care systems

- Compact
- Lightweight
- Portable
- Low maintenance
- Easy-to-use
- Autonomous
- Minimally invasive

Medical informatics is the cross-cutting technology

- Interface capability
- Presentational/display versatility
- Flexibility
- Computational power

Preventive Care Emphasis

NASA has traditionally focused on preventive care to keep flight crews healthy

- Astronaut selection standards
 - ✓ Physical health
 - ✓ Psychological considerations
- Preflight health certifications
 - ✓ Screenings
 - ✓ Spaceflight health requirements
- Protection of human research subjects
 - ✓ Overseen by JSC Institutional Review Board
 - ✓ Rigorous informed consent
 - ✓ Suspension of testing upon request, illness, or injury

Development

Key developmental processes in mammals require gravity stimuli

Biology-inspired Technology Research

- ✓ Human-centered Systems
- ✓ Robotics
- ✓ Smart Materials & Structures
- ✓ Virtual Biology Inspired

 Technology Center providing

 intellectual leadership
- ✓ Cooperative Agreement Notice will be released in March 2000

New class of unnatural folding oligomers

Electronic Nose and Tongue for environmental monitoring

Motor proteins as shuttles

Bioastronautics Initiative

Bioastronautics integrates research, technology development, and mission planning to enhance the safety and productivity of flight crews, with benefits for the health and well-being of people on Earth

OLMSA Outcomes

Improving Industrial
Processes

Looking After Health on Earth & in Space

Enabling Exploration

Researching Tomorrow's

Products

Current OLMSA Research Platforms

Ground/Atmospheric

- Aircraft
- Sub-orbital rockets
- Drop towers/tubes
- Centrifuges
- Particle accelerators (radiation research)
- Closed-environment test-beds

Research proposals are evaluated by peer review committees and are competitively selected by science quality and relevance

Space Flight

Shuttle

International Space Station

Cross-cutting Technology Needs

- Portability
- Miniaturization
- Virtual reality
- Artificial intelligence
- Biologicallyinspired technologies

National Guidance

ISS Utilization plans are guided by national advisory committees...

- Space Studies Board (NRC)
- Board on Health Science Policies (IOM)
- Board on Physics & Astronomy (NRC)
- Aeronautics & Space Engineering Board (NRC)

NASA's Research Directions

NASA has developed research directions for the International Space Station in accordance with internal and external advisory bodies and utilizing Phase I Shuttle-Mir experience.

Partner Agencies

International Collaboration

OLMSA collaborates with international partners in the planning and solicitation of research

International Space Life Sciences Working Group

4 life sciences research proposals from France selected for ISS

International Microgravity Strategic Planning Group

4 microgravity investigations with French participation selected for ISS

*Membership under consideration